Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation.

Identifieur interne : 001F69 ( Main/Exploration ); précédent : 001F68; suivant : 001F70

WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation.

Auteurs : Bobin Liu ; Lin Wang ; Jin Zhang ; Jianbo Li ; Huanquan Zheng ; Jun Chen [République populaire de Chine] ; Mengzhu Lu

Source :

RBID : pubmed:24750781

Descripteurs français

English descriptors

Abstract

BACKGROUND

WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cell niche in the shoot apical meristem (SAM), root apical meristem (RAM), and cambium (CAM). Although the roles of some WOXs in meristematic cell regulation have been well studied in annual plants such as Arabidopsis and rice, the expression and function of WOX members in woody plant poplars has not been systematically investigated. Here, we present the identification and comprehensive analysis of the expression and function of WOXs in Populus tomentosa.

RESULTS

A genome-wide survey identified 18 WOX encoding sequences in the sequenced genome of Populus trichocarpa (PtrWOXs). Phylogenetic and gene structure analysis revealed that these 18 PtrWOXs fall into modern/WUS, intermediate, and ancient clades, but that the WOX genes in P. trichocarpa may have expanded differently from the WOX genes in Arabidopsis. In the P. trichocarpa genome, no WOX members could be closely classified as AtWOX3, AtWOX6, AtWOX7, AtWOX10, and AtWOX14, but there were two copies of WOX genes that could be classified as PtrWUS, PtrWOX2, PtrWOX4, PtrWOX5, PtrWOX8/9, and PtrWOX11/12, and three copies of WOX genes that could be classified as PtrWOX1 and PtrWOX13. The use of primers specific for each PtrWOX gene allowed the identification and cloning of 18 WOX genes from P. tomentosa (PtoWOXs), a poplar species physiologically close to P. trichocarpa. It was found that PtoWOXs and PtrWOXs shared very high amino acid sequence identity, and that PtoWOXs could be classified identically to PtrWOXs. We revealed that the expression patterns of some PtoWOXs were different to their Arabidopsis counterparts. When PtoWOX5a and PtoWOX11/12a, as well as PtoWUSa and PtoWOX4a were ectopically expressed in transgenic hybrid poplars, the regeneration of adventitious root (AR) was promoted, indicating a functional similarity of these four WOXs in AR regeneration.

CONCLUSIONS

This is the first attempt towards a systematical analysis of the function of WOXs in P. tomentosa. A diversified expression, yet functional similarity of PtoWOXs in AR regeneration is revealed. Our findings provide useful information for further elucidation of the functions and mechanisms of WOXs in the development of poplars.


DOI: 10.1186/1471-2164-15-296
PubMed: 24750781
PubMed Central: PMC4023605


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation.</title>
<author>
<name sortKey="Liu, Bobin" sort="Liu, Bobin" uniqKey="Liu B" first="Bobin" last="Liu">Bobin Liu</name>
</author>
<author>
<name sortKey="Wang, Lin" sort="Wang, Lin" uniqKey="Wang L" first="Lin" last="Wang">Lin Wang</name>
</author>
<author>
<name sortKey="Zhang, Jin" sort="Zhang, Jin" uniqKey="Zhang J" first="Jin" last="Zhang">Jin Zhang</name>
</author>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
</author>
<author>
<name sortKey="Zheng, Huanquan" sort="Zheng, Huanquan" uniqKey="Zheng H" first="Huanquan" last="Zheng">Huanquan Zheng</name>
</author>
<author>
<name sortKey="Chen, Jun" sort="Chen, Jun" uniqKey="Chen J" first="Jun" last="Chen">Jun Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210 037, China. chenjun@caf.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210 037</wicri:regionArea>
<wicri:noRegion>Nanjing 210 037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24750781</idno>
<idno type="pmid">24750781</idno>
<idno type="doi">10.1186/1471-2164-15-296</idno>
<idno type="pmc">PMC4023605</idno>
<idno type="wicri:Area/Main/Corpus">002216</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002216</idno>
<idno type="wicri:Area/Main/Curation">002216</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002216</idno>
<idno type="wicri:Area/Main/Exploration">002216</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation.</title>
<author>
<name sortKey="Liu, Bobin" sort="Liu, Bobin" uniqKey="Liu B" first="Bobin" last="Liu">Bobin Liu</name>
</author>
<author>
<name sortKey="Wang, Lin" sort="Wang, Lin" uniqKey="Wang L" first="Lin" last="Wang">Lin Wang</name>
</author>
<author>
<name sortKey="Zhang, Jin" sort="Zhang, Jin" uniqKey="Zhang J" first="Jin" last="Zhang">Jin Zhang</name>
</author>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
</author>
<author>
<name sortKey="Zheng, Huanquan" sort="Zheng, Huanquan" uniqKey="Zheng H" first="Huanquan" last="Zheng">Huanquan Zheng</name>
</author>
<author>
<name sortKey="Chen, Jun" sort="Chen, Jun" uniqKey="Chen J" first="Jun" last="Chen">Jun Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210 037, China. chenjun@caf.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210 037</wicri:regionArea>
<wicri:noRegion>Nanjing 210 037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active Transport, Cell Nucleus (MeSH)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Homeodomain Proteins (genetics)</term>
<term>Homeodomain Proteins (metabolism)</term>
<term>Multigene Family (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (growth & development)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Regeneration (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (génétique)</term>
<term>Protéines à homéodomaine (génétique)</term>
<term>Protéines à homéodomaine (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régénération (génétique)</term>
<term>Transport des protéines (MeSH)</term>
<term>Transport nucléaire actif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Homeodomain Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Homeodomain Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Pousses de plante</term>
<term>Protéines à homéodomaine</term>
<term>Racines de plante</term>
<term>Régénération</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
<term>Protéines à homéodomaine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Chromosomes, Plant</term>
<term>Gene Duplication</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Multigene Family</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Chromosomes de plante</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transport des protéines</term>
<term>Transport nucléaire actif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cell niche in the shoot apical meristem (SAM), root apical meristem (RAM), and cambium (CAM). Although the roles of some WOXs in meristematic cell regulation have been well studied in annual plants such as Arabidopsis and rice, the expression and function of WOX members in woody plant poplars has not been systematically investigated. Here, we present the identification and comprehensive analysis of the expression and function of WOXs in Populus tomentosa.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A genome-wide survey identified 18 WOX encoding sequences in the sequenced genome of Populus trichocarpa (PtrWOXs). Phylogenetic and gene structure analysis revealed that these 18 PtrWOXs fall into modern/WUS, intermediate, and ancient clades, but that the WOX genes in P. trichocarpa may have expanded differently from the WOX genes in Arabidopsis. In the P. trichocarpa genome, no WOX members could be closely classified as AtWOX3, AtWOX6, AtWOX7, AtWOX10, and AtWOX14, but there were two copies of WOX genes that could be classified as PtrWUS, PtrWOX2, PtrWOX4, PtrWOX5, PtrWOX8/9, and PtrWOX11/12, and three copies of WOX genes that could be classified as PtrWOX1 and PtrWOX13. The use of primers specific for each PtrWOX gene allowed the identification and cloning of 18 WOX genes from P. tomentosa (PtoWOXs), a poplar species physiologically close to P. trichocarpa. It was found that PtoWOXs and PtrWOXs shared very high amino acid sequence identity, and that PtoWOXs could be classified identically to PtrWOXs. We revealed that the expression patterns of some PtoWOXs were different to their Arabidopsis counterparts. When PtoWOX5a and PtoWOX11/12a, as well as PtoWUSa and PtoWOX4a were ectopically expressed in transgenic hybrid poplars, the regeneration of adventitious root (AR) was promoted, indicating a functional similarity of these four WOXs in AR regeneration.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This is the first attempt towards a systematical analysis of the function of WOXs in P. tomentosa. A diversified expression, yet functional similarity of PtoWOXs in AR regeneration is revealed. Our findings provide useful information for further elucidation of the functions and mechanisms of WOXs in the development of poplars.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24750781</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation.</ArticleTitle>
<Pagination>
<MedlinePgn>296</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-296</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cell niche in the shoot apical meristem (SAM), root apical meristem (RAM), and cambium (CAM). Although the roles of some WOXs in meristematic cell regulation have been well studied in annual plants such as Arabidopsis and rice, the expression and function of WOX members in woody plant poplars has not been systematically investigated. Here, we present the identification and comprehensive analysis of the expression and function of WOXs in Populus tomentosa.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A genome-wide survey identified 18 WOX encoding sequences in the sequenced genome of Populus trichocarpa (PtrWOXs). Phylogenetic and gene structure analysis revealed that these 18 PtrWOXs fall into modern/WUS, intermediate, and ancient clades, but that the WOX genes in P. trichocarpa may have expanded differently from the WOX genes in Arabidopsis. In the P. trichocarpa genome, no WOX members could be closely classified as AtWOX3, AtWOX6, AtWOX7, AtWOX10, and AtWOX14, but there were two copies of WOX genes that could be classified as PtrWUS, PtrWOX2, PtrWOX4, PtrWOX5, PtrWOX8/9, and PtrWOX11/12, and three copies of WOX genes that could be classified as PtrWOX1 and PtrWOX13. The use of primers specific for each PtrWOX gene allowed the identification and cloning of 18 WOX genes from P. tomentosa (PtoWOXs), a poplar species physiologically close to P. trichocarpa. It was found that PtoWOXs and PtrWOXs shared very high amino acid sequence identity, and that PtoWOXs could be classified identically to PtrWOXs. We revealed that the expression patterns of some PtoWOXs were different to their Arabidopsis counterparts. When PtoWOX5a and PtoWOX11/12a, as well as PtoWUSa and PtoWOX4a were ectopically expressed in transgenic hybrid poplars, the regeneration of adventitious root (AR) was promoted, indicating a functional similarity of these four WOXs in AR regeneration.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This is the first attempt towards a systematical analysis of the function of WOXs in P. tomentosa. A diversified expression, yet functional similarity of PtoWOXs in AR regeneration is revealed. Our findings provide useful information for further elucidation of the functions and mechanisms of WOXs in the development of poplars.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Bobin</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jin</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianbo</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Huanquan</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210 037, China. chenjun@caf.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Mengzhu</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018398">Homeodomain Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018398" MajorTopicYN="N">Homeodomain Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24750781</ArticleId>
<ArticleId IdType="pii">1471-2164-15-296</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-296</ArticleId>
<ArticleId IdType="pmc">PMC4023605</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2001 Dec 15;15(24):3355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Jun 9;19(11):909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Dec 15;135(1-2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7903947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Sep;12(9):419-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Feb;132(4):841-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Mar;21(3):736-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Mar 21;350(6315):241-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1672445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jan;73(1):37-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22946675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):366-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23248305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1992 Jun;8(3):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Jun;131(12):2827-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15169755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Mar 8;15(5):436-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15753038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Jul;5(7):916-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20495368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Mar 17;100(6):635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10761929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):1089-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Dec 11;95(6):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(1):122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Sep;23(9):3247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21926336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2007 Sep 15;309(2):306-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013;13:89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23758772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):240-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23124326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):519-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22374393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 12;446(7137):811-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17429400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1346-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Aug;26(8):1745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15208-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Feb;131(3):657-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Nov;52(11):1016-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20977659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008;8:291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18950478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):841-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19073779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(12):248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20067590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Jun;14(6):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18539115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1983;2(11):2027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6416827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2013 May;140(10):2224-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23578929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 29;78(2):211-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8044836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2618-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<name sortKey="Liu, Bobin" sort="Liu, Bobin" uniqKey="Liu B" first="Bobin" last="Liu">Bobin Liu</name>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<name sortKey="Wang, Lin" sort="Wang, Lin" uniqKey="Wang L" first="Lin" last="Wang">Lin Wang</name>
<name sortKey="Zhang, Jin" sort="Zhang, Jin" uniqKey="Zhang J" first="Jin" last="Zhang">Jin Zhang</name>
<name sortKey="Zheng, Huanquan" sort="Zheng, Huanquan" uniqKey="Zheng H" first="Huanquan" last="Zheng">Huanquan Zheng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Jun" sort="Chen, Jun" uniqKey="Chen J" first="Jun" last="Chen">Jun Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24750781
   |texte=   WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24750781" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020